نوع مدرک: | متون چاپی | سرشناسه | Žižka ، Jan، نویسنده | ردهبندی کنگره : | Q325.5 . | عنوان : | Text mining with machine learning : principles and techniques | تکرار نام مولف : | Jan Žižka, Machine Learning Consiltant, Brono, Czech Republic, František Dařena, Department of Informatics, Mendel University, Brno, Czech Republic, Arnošt Svoboda, Department of Applied Mathematics and Computer Science, Masaryk University, Brno, Czech Republic | ویرایش : | First | صفحه شمار: | 1 online resource (xii, 351 pages) | شابک/شاپا | 978-0-429-89026-0 | یادداشت | Includes bibliographical references and index | شناسه افزوده : | Dařena ، František (1979-) Svoboda, Arnošt | موضوعها : | اصفا Machine learning ؛ Computational linguistics ؛ SemanticsData processing
| چکیده : | "This book provides a perspective on the application of machine learning-based methods in knowledge discovery from natural languages texts. By analysing various data sets, conclusions, which are not normally evident, emerge and can be used for various purposes and applications. The book provides explanations of principles of time-proven machine learning algorithms applied in text mining together with step-by-step demonstrations of how to reveal the semantic contents in real-world datasets using the popular R-language with its implemented machine learning algorithms. The book is not only aimed at IT specialists, but is meant for a wider audience that needs to process big sets of text documents and has basic knowledge of the subject, e.g. e-mail service providers, online shoppers, librarians, etc"-- | مندرجات | 1. Introduction to Text Mining with Machine Learning -- 2. Introduction to R -- 3. Structured Text Representations -- 4. Classification -- 5. Bayes Classifier -- 6. Nearest Neighbors -- 7. Decision Trees -- 8. Random Forest -- 9. Adaboost -- 10. Support Vector Machines -- 11. Deep Learning -- 12. Clustering -- 13. Word Embeddings -- 14. Feature Selection -- References -- Index -- Color Section | لینک ثابت رکورد: | ../opac/index.php?lvl=record_display&id=7601 | زبان مدرک : | English |
| |